Cubic Spline Interpolation Example
Cubic spline interpolation with boundary condition “natural” for the set of points $$\mathcal{D}=\left\{\left(0,21\right),\left(1,24\right),\left(2,24\right),\left(3,18\right),\left(4,16\right)\right\}\,.$$The plotted function is described by $$f(x) = \begin{cases}-0.30357 \cdot x^3 + 3.3036\cdot x + 21& \text{if } x \in [0,1]\\-1.4821\cdot x^3 + 3.5357\cdot x^2 + -0.23214 \cdot x + 22.179& \text{if } x \in (1,2]\\3.2321\cdot x^3 + -24.750 \cdot x^2 + 56.339 \cdot x + -15.536& \text{if } x \in (2,3]\\-1.4464\cdot x^3 + 17.357 \cdot x^2 + -69.982 \cdot x + 110.79& \text{if } x \in (3,4].\end{cases}
$$
LaTeX source
\documentclass[11pt]{article} % graphics \usepackage{tikz} \usepackage{pgfplots} \pgfplotsset{compat=1.12} \usepgfplotslibrary{fillbetween} \begin{document} \begin{tikzpicture} \pgfplotsset{ scale only axis, } \begin{axis}[ xlabel=$x$, ylabel=$y$, samples=100, ]\addplot [only marks] table { 0 21 1 24 2 24 3 18 4 16 }; \addplot[][domain=0:1]{+-0.30357142857142855*x^3+3.0785714285714284e-61*x^2+3.3035714285714284*x^1+21*x^0}; \addplot[][domain=1:2]{+-1.4821428571428572*x^3+3.5357142857142856*x^2+-0.23214285714285715*x^1+22.178571428571427*x^0}; \addplot[][domain=2:3]{+3.232142857142857*x^3+-24.75*x^2+56.339285714285715*x^1+-15.535714285714286*x^0}; \addplot[][domain=3:4]{+-1.4464285714285714*x^3+17.357142857142858*x^2+-69.98214285714286*x^1+110.78571428571429*x^0}; \end{axis} \end{tikzpicture} \end{document}